从一道函数题看高三数学学习法 |
作者:新闻晚报 文章来源:SINA 点击数: 更新时间:2008-8-29 14:17:00 |
|
高三数学与高一、高二有何区别?这是进入高三同学都很关心的。高三数学表面看是应对高考,其实,在这一过程中,始终都涉及各种能力的综合培养与提高。
夯实基础是高三数学学习的第一关,要把各数学分支的相关基础知识、基本技能掌握好。由于高考是选拔性考试,有些试题的综合性较强,对技能技巧要求较高,因此高三数学学习不仅是要掌握基础,还要善于解答一些综合性强的问题,这是第二关。
一道综合题可以把多个知识点有机的结合起来,因而解题环节多,解题过程长,思维强度大,细心程度高,哪儿出了一点问题都会功亏一篑。我们来看一个例子。
例:
已知奇函数f(x)在(-∞,0)∪(0,+∞)上有定义,且在(0,+∞)上是增函数,f(1)=0;函数g(θ)=sin2θ+m·cosθ-2m,θ∈[0,π/2]。若集合M={m|g(θ)<0},集合N={m|f[g(θ)<0]},求M∩N。
本题中N是f(x)的复合函数,且不知其具体的表达式,无法求出M与N的交集。当解题困难时,回到已知!因f(x)是奇函数且在(0,+∞)上是增函数,故f(x)在(—∞,0)上也是增函数。由f(1)=0知f(-1)=0,由数形结合可知,当f(x)<0时可得x<1或0
∴N={m|f[g(θ)]<0]}={m|g(θ)<-1或0
∴M∩N={{m|g (θ)<-1}。即sin2θ+m·cosθ-2m+1<0,问题转化为不等式cos2θ-m·cosθ+2m-2>0恒成立。
这是一个双变量不等式,谁是主元?从条件看是m。但同学们最熟悉的是“反客为主”的解题思想:令t=cosθ,则t∈[0,1],视为t的二次函数,记
Φ(t)=t2-mt+2m-2=(t-m/2)2+2m-2-m2/4,t∈[0,1]。这是“轴变区间定型”最值问题,分三种情况讨论,解得M∩N={m|m>4-2 2姨 }。
若从主元m的角度考虑,就会想到用分离变量法来解:t2-mt+2m-2>0 <=> m>(2-t2)/(2-t),
令h(t)=(2-t2)/(2-t),则h(t)=t2+2/(t-2)+4≤4-2 2姨 => m>4-2 2姨 。
本题集合只是一种符号语言,涉及主要知识点为函数、三角、不等式。
本题涉及主要数学思想方法有:
(1)数形结合思想,有两处。其一是由f (x)<0得x<1或0
(2)转化与化归的思想。把不等式恒成立问题转化为函数 (或不等式)在闭区间的最值(恒成立)问题是第一次转化,本来要求m的范围,却把m视为常数,转化为t为变量的二次函数(或分式函数),“欲擒故纵”是第二次转化。
[1] [2] 下一页
|
|
|
上一个文章: 名校数学理单元专题全方位解析(21) 下一个文章: 名师谈高考复习:高一新生如何学好数学基础 |