例55:11,22,44,88,()
A.128 B.156 C.166 D.176
【解析】答案为D。奇数项与偶数项分别呈公比为4的等比数列,故括号内应为44x4=176
例56:2.01,4.02,8.04,16.08,()
A.32.08 B.32.16 C.30.08 D.30.16
【解析]答案为B。奇数项与偶数项分别呈公比为4的等比数列。
例57:1,50,2,49,4,47,()
A.6 B.7 C.46 D.8
【解析】答案为B。奇数项的后一项与相邻前一项的差依次为1,2;偶数项后一项与相邻前一项的差依次为1,2;故括号内应为4+3=7
【解析]答案为A。分母的值从第二项起分别为2,3,4,5,故应填项的分母为6,又从第二项起二、三两项的乘积为1,四、五两项的积为1,且偶数项的值的分子比分母大1,故应为子
【解析】答案为D数列各项分母依为:,4,5,6,7;分子依次为2,3,4,5,6,故括号内应为粤
【解析】答案为C。数列中各项分子依次为1,2,3,4;分母依次丫1-+1,丫2-+1,丫3-+1,
丫4-+lA,故括号内应为
【解析】答案为“·此数列可变形为去,护,,洽,舟,故各项分母分别加,4,} ),16,
25的平方,可判断它们后一项与相邻前一项差依次为3,5,7,9,故所缺应为步=六·
例62:江,万,振,派,()
A.为2 B.为3 C.石2 D.石3
【解析】答案为B。被开方数分别为2,3,5,8,它们的后一项为相邻前两项的和。故应填同的被开方数为13;而所给数据开方的次数依次为2,3,4,5,故应填人项的开方次数为6。所以组合在一起的结果应为为互
例63:江一1,
理化可以得到万一江,第三项用同一方法可以得到2一万,那么未知项应该是c一2,即答案为A
例64:123,456,789,()
A.1112 B.101112 C.11112 D.100112
【解析】答案为A。这种题表面形式上可以得到规律:123,456,789,那么不会出发现101112的情况呢,其实这时应该想到等差数列,第一项为123,第二项为456,第三项为789,三项中相邻的差都是333,所以应把上面数列看作是一个等差数列,未知项应该是789 + 333 = 1122,故正确答案为A
1、经典真题回顾
1. [ 2001年中央卷第42题”
6,24,60,132,()
A.140 8.210 C.212 D.276
【解析】砸过分析得知此数列后一项与前一项的差构成一个公比2的等比数列,即18,36,72,也就是说,6+ 18=24,24+36=60,60+72= 132,由此推知空缺项应为132 + 144 = 276,故正确答案为
2. [ 2002年中央卷(A类第s题〕
34,36,3s,3s,(),34,37,()
A.36,33 B .33,36 C .37,34 D .34,37
【解析】此题为混合数列。其中奇数项是公差为1的递增数列,偶数项是公差为1的递减数列。由此可知空缺项分别应为36,33故正确答案为A
3. [ 2002年中央卷(B类第3题)
32,27,23,20,18,()
A.14 B.is C.16 D.17
【解析】本题为二级等差数列,相邻两数的差值组成公差为1的递减数列,由此可知空缺项应为18一1=17故答案为D
4. [ 2003年中央卷(A类第1题)
1,4,8,13,16,20,()
A.20 B.2s C.27 D.28
【解析】该数列相邻两数的差成3,4,s一组循环的规律,所以空缺项应为20+s=2s,故选B
5 . [ 2003年中央卷(A类第4题)
(),36,19,10,s,2
A.77 8.69 C.54 D.48
【解析】该数列的规律比较难找,需要相邻两数做差后丙次做差,我们从给出的五个数相邻的两数做差得到17,9,5,3,丙将这四个数做差得到8,4,2,可以发现它们都是2的,1次方(n=1,2,3……),所以空缺项应为36+17+24=69,故答案选B
6 . [ 2003年中央卷(B类第2题〕
1,1,2,6,24,()
A.48 8.96 C.120 D.144
【解析】该数列分}!1从0到5的阶,0! =1,1! =1,2! =2,3! =6,4! =24,5! =120,故选C项
7 . [ 2003年中央卷(B类第4题〕
1,2,6,15,31,()
A.53 8.56 C.62 D.87
【解析】该数列相邻两个数之差分别从1到5的平方,2一1=1,6一2=4,15一6=9,31一15=16,56一31=25,故选B项
8 . [ 2003年中央卷(A类第3题〕
1,4,27,(),3125
A.70 B.184 C.256 D.351
【解析】该数列是,1的,1次方(n=1,2,3,ww ),11,22,33ww55,所以要选的数应该是4的4次方即256,故选C
三、高分技巧宝典
数字推理题难度较大,但并非无规律可循,了解和掌握一定的方法和技巧,对解答数字推理问题大有帮助
1.快速浏览已给出的几个数字,仔细观察和分析各数字之间的关系,尤其是前三个数之间的关系,大胆提出假设,并迅速将这种假设延仲到下面的数,如果能得到验证,即说明找出规律,问题即迎刃而解;如果假设被否定,立即改变思考角度,提出另外一种假设,直到找出规律为止
2.数字推理题应注意把握隐含的规律。解答数字推理题时,不要被表面的现象所迷惑。有些数字推理题,一眼看上去似乎存在着某种关系,仔细分析并非如此,考生切记因为时间紧迫而忽略这一点。
3.推导规律时,往往需要简单计算,为节省时间,要尽量多用心算,少用笔算或不用笔算。
4.空缺项在最后的,从前往后推导规律;空缺项在最前面的,则从后往前寻找规律;空缺项在中间的可以两边同时推导。
5.若自己一时难以找出规律,可用常见的规律来“刘弓一人座”,加以验证
6.当遇到难题时,可以先跳过去做其他较容易的题日,等有时可丙返同来答难题第二节数学运算数量关系中的数学运算题,主要考查学生解决算术问题的能力,这类题的出题方式有两种,一是算术式,二是文字题,要求考生在很短的时间内读懂题日,得出结果,并能依据四项选择答案找出正确选项
数学运算比较大小和典型问题是测试中常见的题型。其中,比例问题、路程问题、工程问题、对分问题、植树问题、跳井问题、计算预资问题、日历问题等是典型问题中常见的数学问题。 上一页 [1] [2] [3] [4]
|